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AN ENERGY DECAYING SCHEME FOR NONLINEAR DYNAMICS OF SHELLS

CARLO L. BOTTASSO�, OLIVIER A. BAUCHAUy, AND JOU-YOUNG CHOIz

Abstract. A novel integration scheme for nonlinear dynamics of geometrically exact shells is developed

based on the inextensible director assumption. The new algorithm is designed so as to imply the strict decay

of the system total mechanical energy at each time step, and consequently unconditional stability is achieved

in the nonlinear regime. Furthermore, the scheme features tunable high frequency numerical damping and

it is therefore sti�y accurate. The method is tested for a �nite element spatial formulation of shells based

on mixed interpolations of strain tensorial components and on a two-parameter representation of director

rotations. The robustness of the scheme is illustrated with the help of numerical examples.
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1. Introduction. The formulation of integration algorithms for nonlinear dynamics of geometrically

exact shells is the focus of this work. The partial di�erential equations governing this class of problems are

known to present a rich mathematical structure. In particular, the resulting models are Hamiltonian systems

characterized by a symplectic nature and associated with conservation laws that stem from symmetries of

the Hamiltonian. The linear and angular momentum as well as the total mechanical energy are conserved

for free motions of such systems.

The understanding of the geometric characteristics of the governing equations has been historically

con�ned to the �elds of analytical mechanics and pure mathematics. Surprisingly, this knowledge has been

seldom used for the development of numerical methods. Indeed, the study of new integration algorithms has

been traditionally preoccupied with the development of methods applicable to vast classes of problems, for

example the class of di�erential/algebraic equations, or hyperbolic conservation laws. Consequently, classical

methods rarely preserve the underlying structure of the problem being solved, and hence, such structure is

lost in the numerical solution.

This approach also limits the possible theoretical analyses of the schemes, which are, more often than

not, con�ned to linear or model cases. For instance, it is customary to characterize integration schemes

for structural dynamics by studying their behavior when applied to a linear oscillator. This approach is

clearly not adequate when dealing with highly nonlinear problems such as the dynamics of geometrically

exact shells.

A new approach to the design of integration algorithms attempts to bridge the divide between theoretical

and numerical mechanics. Under this new paradigm, numerical schemes are \backward-engineered" to

preserve some important qualitative features of the governing equations. Fittingly, this approach is now

called geometric integration in the mathematical community [18]. Attempts at designing \geometry-aware"

algorithms for structural dynamics problems can be traced back to the work of Simo and co-workers who
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analyzed the problems of rigid body dynamics [26], nonlinear elasto-dynamics [23], geometrically exact

shells [24], and geometrically exact beams [25]. In all cases, the idea was to design algorithms that ensure

the discrete preservation of the total mechanical energy and of the linear and angular momenta of the system.

When integrating linear and nonlinear �nite element models, the implications of the discrete equations

sti�ness must be carefully considered. Indeed, high frequencies are an artifact of the spatial discretization

process and do not reect the high frequencies of the original in�nite dimensional problem. The need for

high frequency numerical dissipation has been recognized in the past for linear problems [20]. When dealing

with complex nonlinear systems, numerical dissipation becomes indispensable. Indeed, nonlinearities provide

a mechanism for transferring energy from low to high frequency modes. Consequently, numerical solutions

feature violent oscillations of a purely numerical origin that will eventually play havoc with the convergence

characteristics of the nonlinear equation solver.

Among the various geometric characteristics of shell equations, energy preservation appears to be the

most important for the development of robust time integration schemes. In fact, strict energy preservation

at the discrete level leads to unconditional stability in the nonlinear regime, whereas the classical approach

based on the analysis of the spectral radius leads to unconditional stability in the linear regime only. An

energy preserving (EP) scheme for geometrically exact shell is developed in this paper. In addition, the

scheme also preserves both linear and angular momenta of the system at the discrete level. Unfortunately,

preservation of energy and high frequency dissipation cannot coexist, unless energy is transferred from high

to low frequency modes, a transfer that has no physical basis. To solve this problem, a family of energy

decaying (ED) schemes that imply a controllable energy decay within each time step is proposed in this work.

In geometric terms, this means that the evolution of the system is not con�ned to the level set of constant

energy, but is allowed to drift away from it in a monotonic and controllable manner. Since the energy remains

bounded at all times, the scheme is unconditionally stable for nonlinear systems. Furthermore, it can be

shown that the energy dissipation mechanism of the algorithm is the result of the removal of the higher

frequencies from the computed response.

In related papers, various energy preserving and decaying geometric integrators were developed for rigid

bodies and geometrically exact beams [10, 11, 14, 6, 7], and nonlinear elastodynamics [9]. The concepts

were extended to multibody systems featuring nonlinear holonomic constraints [3, 15, 12, 16, 13]; non-

holonomic and unilateral constraints were treated in [5, 4]. The integration of the present shell model in a

general �nite element based multibody framework is discussed in [8]. The proposed scheme is independent

of the choice of spatial discretization applied to the governing partial di�erential equations. In the present

implementation, the �nite element method is used, and the mixed interpolation of tensorial components [1,

2, 17] is implemented to avoid the shear locking problem. The orientation of unit shell directors is described

by a special family of two-parameter rotations.

The paper is laid out as follows. The classical equations of motion for geometrically exact shells based

on inextensible unit directors are presented in section 2. Next, an EP scheme is developed in section 3.

Section 4 then presents an ED algorithm with tunable high frequency dissipation that is constructed from

the EP scheme. Finally, numerical examples are presented in section 5 to demonstrate the e�ciency and

robustness of the proposed scheme. A discussion section concludes the paper.

2. Formulation of the Equations of Motion.

2.1. Kinematics of the Shell Problem. Consider a shell of thickness h and reference surface area 
,

as depicted in �g. 2.1. An inertial frame of reference S consisting of three mutually orthogonal unit vectors

i1, i2, i3 is used. Let r0 be the position vector of an arbitrary point on the reference surface of the shell, and
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Fig. 2.1. Con�guration of the shell in the reference and deformed con�gurations.

let � be the material coordinate along n, the normal to the reference surface. The position vector r of an

arbitrary point on the shell in its reference con�guration is then

r(�1; �2; �) = r0(�
1; �2) + � n(�1; �2); (2.1)

where �1and �2 are the material coordinates used to represent the shell reference surface. The coordinates

�1; �2 and � form a set of curvilinear coordinates that are a natural choice to represent the shell geometry.

The coordinates �1and �2 are assumed to be lines of curvatures of the shell reference surface. The base

vectors are then

g =
h
g
1
; g

2
; g

3

i
=

�
r;1; r;2;

@r

@�

�
=

�
(1� �

R1

) a1; (1�
�

R2

) a2; n

�
; (2.2)

where R1 and R2 are the principal radii of curvature, a� = r0;�, and the notation (�);� is used to denote a

derivative with respect to ��. It is convenient to introduce a set of three mutually orthogonal unit vectors

at the shell reference surface (i.e. at � = 0)

e1 =
a1p
a11

; e2 =
a2p
a22

; e3 = n; (2.3)

where a�� = a� � a�.
Two fundamental assumptions will be made concerning the deformation of the shell, i.e. the material

line initially normal to the reference surface of the shell remains a straight line and su�ers no extension.

This is the classical inextensible director model. With these assumptions, the position vector of a material

point of the shell writes

R(�1; �2; �) = r0(�
1; �2) + u(�1; �2) + � E3(�

1; �2); (2.4)
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where u(�1; �2) is the reference surface displacement vector. In the deformed con�guration, the base vectors

at the shell reference surface are

G = [G1; G2; G3] =

�
R;1; R;2;

@R

@�

�
: (2.5)

Introducing the position vector, eq. (2.4), then yields

Ĝ =

�
G1p
a11

;
G2p
a22

; G3

�
= E + � H; (2.6)

where

E = [E1; E2; E3] =

�
e1 +

u;1p
a11

; e2 +
u;2p
a22

; E3

�
; H =

�
E3;1p
a11

;
E3;2p
a22

; 0

�
: (2.7)

Note that E3(�
1; �2) is a unit vector, whereas E1 and E2 are not unit vectors, nor are they orthogonal to

E3, as axial and transverse shearing strains develop during deformation.

2.2. Equations of Motion. The Green-Lagrange strain tensor e is de�ned as

e =
1

2
(GTG� gT g): (2.8)

The strain tensor e is de�ned in the curvilinear coordinate system de�ned by coordinates �1; �2 and �.

However, it is more convenient to work with the strain tensor e de�ned in the locally rectangular system

de�ned by triad e1, e2, e3, see eqs. (2.3). For shallow shells (i.e. �=R1 � 1 and �=R2 � 1) undergoing large

displacements and rotations but small strains (all strain components are assumed to be small compared to

unity), the strain-displacement relationships can be written as

e =
1

2

�
ETE � I + �

�
ETH +HTE + �

��
; (2.9)

where

� =

264 1=R1 0 0

0 1=R2 0

0 0 0

375 : (2.10)

It is clear that the strains can be expressed in terms of �ve parameters: the three components of the

displacement �eld u (through E1 and E2) and the two parameters de�ning the orientation of the unit

director E3. Virtual changes in the strain energy of the structure are given by

�V =

Z



Z
h

� �V d�d
 =

Z



Z
h

�e � � d�d
; (2.11)

where � �V is the virtual strain energy density, and � the second Piola-Kirchho� stress tensor. Introducing

the strains, eq. (2.9), and taking into account the symmetry of the stress tensor then yields

� �V = �E � (E + �H)� + �H � �E�: (2.12)

The existence of a strain energy density function �V is postulated here, hence the constitutive laws are of the

form � = @ �V =@e.

The velocity vector of material point P of the shell is obtained by di�erentiating the position vector,

eq. (2.4), with respect to time, to �nd v = _u+ � _E3. The kinetic energy of the system is now

K =

Z



Z
h

�K d�d
 =
1

2

Z



Z
h

� v � v d�d
; (2.13)
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where �K is the kinetic energy density. Introducing the velocity vector then yields

�K =
1

2
� ( _u+ � _E3) � ( _u+ � _E3): (2.14)

Hamilton's Principle can now be expressed asZ tf

ti

Z



Z
h

(� �K � � �V ) d�d
dt

=

Z tf

ti

Z



Z
h

h
�(�u+ ��E3) � (�u+ � �E3) + �E � (E + �H)� + �H � �E� ] d�d
dt

= 0: (2.15)

Integrating through the thickness of the shell, we getZ tf

ti

Z



n
�u �

h
_h� (N1;1 +N2;2)

i
+ �E �

h
_g
f
� (M1;1 +M2;2) +N3

io
d
dt = 0: (2.16)

In this expression, h = m _u + s� _E3, and g = s� _u + I� _E3 are the linear and angular momentum vectors of

the shell, respectively; the mass coe�cients are de�ned as m =
R
h
� d�, s� =

R
h
�� d�, I� =

R
h
��2 d�.

The in-plane forces are N� = (EN�� +HM�

�)=
p
a��, the out-of-plane forces N3 = EN�3, and the bending

moments M� = (EM�

�)=
p
a��. The convected forces are N� = [N�1; N

�

2; N
�

3] =
R
h
� d�, and the convected

bending moments M� = [M�

1;M
�

2;M
�

3] =
R
h
�� d�.

The equations of motion of shells could be derived from this principle by expressing the variations �E3

in terms of two components of virtual rotation.

3. Energy Preserving Scheme. Discrete equations of motion that imply discrete conservation laws

for the total mechanical energy, linear momentum and angular momentum of the system will now be de-

veloped. Times ti and tf denote the initial and �nal times for a time step, respectively, and the subscripts

(�)i and (�)f indicate quantities at ti and tf , respectively. Furthermore, the subscript (�)m is used to denote

mid-point average quantities de�ned as

(�)m =
1

2
[(�)f + (�)i] : (3.1)

The following matrix identity will be used extensively

AT
f Bf �AT

i Bi = (Af �Ai)
TBm +AT

m(Bf �Bi): (3.2)

Hamilton's Principle, eq. (2.15), is now approximated in time in the the following manner

Z



Z
h

(
�
�
(uf � ui) + �(E3f �E3i)

� � " _uf � _ui
�t

+ �
_E3f � _E3i

�t

#

+(Ef �Ei) � (Em + �Hm)�a + (Hf �Hi) � �Em�a

)
d�d
 = 0: (3.3)

The change in strain components from ti to tf is evaluated with the help of identity (3.2) to �nd

ef � ei =
1

2

�
(Ef �Ei)

T (Em + �Hm) + (Em + �Hm)
T (Ef �Ei)

+(Hf �Hi)
T �Em + �ET

m(Hf �Hi)
�
: (3.4)
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Over one time step, the strain components can be approximated as e(�) = em + �(ef � ei)=2, where � =

2(t� tm)=�t is the non-dimensional time. If the strain energy density function �V is viewed as a function of

the scalar variable �, the mean value theorem then implies the existence of a �� 2 [�1; 1] such that

�Vf = �Vi +
@ �V

@e

����
��

de

d�
2 = �Vi + �a � (ef � ei): (3.5)

This relationship de�nes the average second Piola-Kirchho� stress tensor, �a = @ �V =@ej��. Combining this

result with eq. (3.4) then leads to

(Ef �Ei) � (Em + �Hm)�a + (Hf �Hi) � �Em�a = (ef � ei) � �a = �Vf � �Vi; (3.6)

where the symmetry of the stress tensor was taken into account. For linear constitutive laws of the form

� = C� e, where C� is the sti�ness matrix, the average stress tensor simply becomes �a = C� em.

The following con�guration updates are now de�ned

uf � ui
�t

= _um;
E3f �E3i

�t
= _E3m: (3.7)

Introducing eqs. (3.6) and (3.7) into the approximate expression for Hamilton's Principle, eq. (3.3), then

leads toZ



Z
h

n�
2
( _um + � _E3m) �

h
( _uf � _ui) + �( _E3f � _E3i)

i
+ (�Vf � �Vi)

o
d�d


=

Z



Z
h

n�
2
( _uf + � _E3f ) � ( _uf + � _E3f )�

�

2
( _ui + � _E3i) � ( _ui + � _E3i) + ( �Vf � �Vi)

o
d�d


=

Z



Z
h

�
( �Kf � �Ki) + ( �Vf � �Vi)

�
d�d
 = 0: (3.8)

This result clearly implies the conservation of the total mechanical energy of the system within a step.

In summary, the approximate form of Hamilton's Principle given by eq. (3.3) leads to a discrete energy

conservation statement, eq. (3.8), when the con�guration updates are chosen according to eqs. (3.7), and the

average stress according to eq. (3.5).

Integrating through the thickness of the shell leads toZ



�
(uf � ui) �

�
hf � hi
�t

� (N1m;1 +N2m;2)

�
+ (E3f �E3i) �

�g
f
� g

i

�t
� (M1m;1 +M2m;2) +N3m

��
d
 = 0: (3.9)

In this expression, the in-plane forces are N�m = (EmN
�

�a+HmM
�

�a)=
p
a��, the out-of-plane forces N3m =

EmN
�

3a, and the bending moments M�m = (EmM
�

�a)=
p
a��. The discrete governing equations of motion

for shells are then

hf � hi
�t

� �
N1m;1 +N2m;2

�
= p

m
; (3.10)

QT
m

g
f
� g

i

�t
�QT

m

�
M1m;1 +M2m;2 �N3m

�
= q�

m
; (3.11)

where p are the externally applied loads, and q� the externally applied moments measured in the local

system. The �nite change in director orientation E3f � E3i was expressed in terms of the two parameter

incremental rotation vector, see B.
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Invariance of the system Hamiltonian under spatial translations and rotations implies the conservation

of the linear and angular momenta. Although discrete preservation of momenta is less crucial than discrete

preservation of energy, it is interesting to note that eqs. (3.10) and (3.11) also imply the discrete preservation

of this invariant. At �rst, eqs. (3.10) are projected onto the test functions e� (r0 + um) and eqs. (3.11) onto

the test functions e� E3m, where � is an arbitrary vector. Next, integration over the shell reference surface

yieldsZ



�e� (r0 + um) �
�
hf � hi
�t

� (N1m;1 +N2m;2)

�
+ e� E3m �

�g
f
� g

i

�t
� (M1m;1 +M2m;2) +N3m

��
d
 = 0: (3.12)

Straightforward algebraic manipulations then lead to

�

�t
�
Z



h
(er0 + euf ) hf � (er0 + eui) hi + ehm(euf � eui)

+ eEfgf � eEigi + eg
m
(eEf � eEi)

i
d
 = 0; (3.13)

where the following result was used

eE1mN1m + eE2mN2m + eE3;1mM1m + eE3;2mM2m + eE3mN3m = 0: (3.14)

Inserting the con�guration updates, eqs. (3.7), into eq. (3.13) then yields

�

�t
�
Z



h
(er0 + euf ) hf � (er0 + eui) hi + eE3fgf � eE3igi +

�ehm _um + eg
m
_E3m

�i
d
 = 0: (3.15)

It is easily veri�ed that ehm _um + eg
m
_E3m = 0. Hence, since � is arbitrary, eq. (3.15) implies the discrete

conservation of the total angular momentum,
R


[(er0 + eu) h + eE g] d
. Finally, projecting eqs. (3.10) onto

the test functions � and eqs. (3.11) onto the null test functions gives the discrete conservation of the total

linear momentum
R


h d
.

It is important to note that any spatial discretization of the discrete equations of motion will inherit

the discrete energy and momentum conservation statements just proved, when the con�guration updates are

chosen according to eqs. (3.7), and the average stress according to eq. (3.5).

4. Energy Decaying Scheme. As discussed in the introduction, energy preservation, per se, is not

su�cient to yield robust time integration schemes. High frequency numerical dissipation must be added as

an inherent feature of the scheme. Such a scheme will now be constructed for the shell equations of motion

using the EP scheme as a basic building block.

First, an additional state is introduced at time tj = lim�!0(ti + �), and the subscript (�)j is used to

denote quantities at this time. The following averages are now de�ned

(�)g = 1

2
[(�)f + (�)j ] ; (�)h =

1

2
[(�)j + (�)i] : (4.1)

The ED scheme proceeds from the initial to the �nal time by means of two coupled steps: one step from ti

to tf , the other from ti to tj . The time-discrete equations of dynamic equilibrium are

hf � hi
�t

� �
N1g;1 +N2g;2

�
= p

g
;

QT
m

g
f
� g

i

�t
�QT

g

�
M1g;1 +M2g;2 �N3g

�
= q�

g
;

(4.2)
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hj � hi
�t

+
1

3

��
N1g;1 +N2g;2

�� �
N1p;1 +N2p;2

��
= p

h
;

QT
h

g
j
� g

i

�t
+

1

3

�
QT
g

�
M1g;1 +M2g;2 �N3g

��QT
h

�
M1p;1 +M2p;2 �N3p

��
= q�

h
:

(4.3)

The con�guration update relationships are given as

uf = ui +�t ( _uf + _uj)=2; uj = ui ��t
�
_uf � _ui � �( _uj � _ui)

�
=6;

E3f = E3i +�t ( _E3f +
_E3j)=2; E3j = E3i ��t

h
_E3f � _E3i � �( _E3j � _E3i)

i
=6;

(4.4)

where � is a tuning parameter that controls the amount of numerical dissipation provided by the scheme,

while the forces N�p and moments M�p are given by

N�p = N�h + � (N�j �N�i)=2; M�p =M�h + � (M�j �M�i)=2: (4.5)

Using developments similar to those exposed for the EP scheme, it can be easily shown that the proposed

discrete equations imply

(Kf + Vf )� (Ki + Vi) + � c2 = 0: (4.6)

c2 is a positive quantity given by

c2 =

Z



1

2

h
m k _u k � k _u k +2s� k _u k � k _E3 k +I� k _E3 k � k _E3 k

i
d


+

Z



1

2
k e k C� k e k d
 � 0; (4.7)

where k � k= (�)j � (�)i is the jump between ti and tj . This result implies the decay of the total mechanical

energy over one step of the algorithm, (Kf +Vf ) � (Ki+ Vi). The parameter � clearly controls the amount

of energy that is dissipated within the step. Two such parameters could be used, controlling the amount of

dissipated kinetic and strain energies, respectively, but this level of complexity does not seem to be necessary.

The property of preservation of momentum observed in the EP case is lost in the ED algorithm.

If the above ED scheme is applied to a single degree of freedom linear oscillator, the asymptotic value

of the spectral radius of the ampli�cation matrix, �1, is found to be �1 = (1 � �)=(1 + �). For � = 1,

�1 = 0, and asymptotic annihilation is achieved. If � = 0, �1 = 1, and in view of eq. (4.6), energy is

exactly preserved. Hence, the ED scheme is in fact a family of schemes with a single tuning parameter,

�, that controls the amount of high frequency numerical dissipation; both asymptotic annihilation or exact

energy preservation can be achieved with the same scheme by using � = 1 or 0, respectively.

5. Numerical Examples. All the examples described in this section will be treated with the proposed

ED family of schemes corresponding to values of the tuning parameter � 2 [0; 1]. Although any value of �

within this range can be used, the examples described here will contrast the two extreme choices. For � = 1

(�1 = 0), asymptotic annihilation is obtained, and this will be called the ED scheme. On the other hand,

for � = 0 (�1 = 1), exact energy preservation is achieved, and this will be called the EP scheme.

5.1. Clamped Half-Cylinder under Point Load. Consider the half-cylinder of radius R = 1:2 m

and width b = 2 m depicted in �g. 5.1. The shell has a thickness t = 6 mm, is build-in along edge BC

and free along the other. The structure is made of aluminum; Young's modulus E = 73 GPa, Poisson's
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Fig. 5.1. Con�guration of the clamped half-cylinder.

t = 1.2 [sec]

t = 3.6 [sec] t = 4.8 [sec]

t = 2.4 [sec]

Fig. 5.2. Con�guration of the system at various instants in time.

ratio � = 0:30 and density � = 2700 kg=m3. At point D, the shell is subjected to a concentrated load

P = �P0(t)(i1 + i2 + i3). The magnitude of the load is

P0(t) =

(
P (1� cos 2�t=T )=2 t � T;

0 t > T;
(5.1)

where P = 0:1 kN and T = 2:0 s. The shell was modeled by a regular 8� 4 mesh of quadratic elements. All

simulations were run with a time step �t = 5:0 10�03 s, for a total time of 6 s.

Under the e�ect of the applied loads, the shell bends predominantly in the vertical direction, its direction
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Fig. 5.3. Displacement components at point D. U1: 4; U2: �; U3: 2. ED scheme: solid line; EP scheme: dashed line.

0 1 2 3 4 5 6

−100

−50

0

50

100

150

TIME

B
E

N
D

IN
G

 M
O

M
E

N
T

S
 A

T
 P

O
IN

T
 M

 [N
]

Fig. 5.4. Time history of bending moments at point M . M11: 4; M12: �; M22: 2. ED scheme: solid line; EP scheme:

dashed line.

of least bending sti�ness, as illustrated in �g. 5.2 that shows the con�guration of the system at various instants

in time. The three components of displacements at point D are shown in �g. 5.3; vertical displacements

of up to 0:6 m are observed. The bending and twisting moments, M11, M22, and M12, respectively, at

point M are shown in �g. 5.4. Note the signi�cant transverse and twisting moments associated with the

three-dimensional motion of the shell. The components of in-plane and transverse shearing forces are shown

in �g. 5.5 and 5.6, respectively.

Next, the same problem was simulated with �1 = 1, i.e. with no high frequency dissipation. The

corresponding results are shown in �gs. 5.3 to 5.6. Displacement and moment results are found to be in

excellent agreement. At the scale of the �gures, they are, in fact, indistinguishable. For the period of time

2 < t < 6 s, the system is not subjected to any loading, and the total mechanical energy of the system should

remain constant. For the EP scheme, the energy is indeed preserved, as expected; for the ED scheme, 0.3%
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Fig. 5.5. Time history of in-plane forces at point M . F11: top �gure; F12: middle �gure; F22: bottom �gure. ED scheme:

solid line; EP scheme: dashed line.
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Fig. 5.6. Time history of transverse shear forces at point M . F13: top �gure; F23: bottom �gure. ED scheme: solid line;

EP scheme: dashed line.

of the energy is numerically dissipated in this period. It could be concluded that the EP and ED solutions

are nearly identical, and that numerical dissipation is not necessary. However, the ED and EP scheme

predictions for the in-plane and transverse shearing forces, shown in �g. 5.5 and 5.6, are markedly di�erent.

EP predictions for force components F11, F12, and F13 show high frequency oscillations that are absent in

the corresponding ED predictions. A simulation using the ED scheme with a time step �t = 1:0 10�03 s

showed that the ED predictions are converged. A simulation using the EP scheme and the same smaller time

step yielded results with increased high frequency oscillations for the force predictions. It should be noted

that the dynamic response of this simple system is very smooth; yet even here, high frequency numerical

dissipation appears to be necessary to obtain a smooth, converged solution.
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Fig. 5.8. Time history of the total mechanical energy (top �gure) and relative energy loss (bottom �gure). Plate model

(EDS): solid line; Plate model (EPS): dashed line; Beam model (EDS): dashed-dot line.

5.2. Dynamic Response of a Plate with Edge Beams. Consider the rectangular plate of length

L = 2 m, width b = 0:05 m and thickness t = 2 mm as depicted in �g. 5.7. Two circular beams of radius

r = 2 mm are attached at the plate edges. A third circular beam is located at the center of the plate. All

components are made of aluminum; Young's modulus E = 73 GPa, density � = 2700 kg=m3. The total mass

of the edge beams is 10 kg each, and that of the central beam is 1 kg. The plate is subjected to uniformly

distributed loads Fm and F` along FE and CB, respectively. The components of these loads along the i1
and i3 axes are F1m = 40 N=m and F3m = 80 N=m, respectively, and F1` = �20 N=m and F3` = �60 N=m,
respectively. The common time history of each loading component is

Fi(t) =

(
Fi (1� cos 2�t=T )=2 t � T;

0 t > T;
(5.2)

12



−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

DISPLACEMENT U
1
 [m]

D
IS

P
LA

C
E

M
E

N
T

 U
3 [m

]

Fig. 5.9. Trajectory of the plate mid-span point. Plate model (EDS): solid line; Plate model (EPS): dashed line; Beam

model (EDS): dashed-dot line.
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Fig. 5.10. Time history of the quarter-span axial force. Plate model (EDS): solid line; Plate model (EPS): dashed line;

Beam model (EDS): dashed-dot line.

where T = 3:0 s. The plate is discretized with 10 quadratic plate elements along its length. A constant time

step �t = 6 10�03 s was used for all simulations.

At time t > 3 s the applied load vanishes, and the system total mechanical energy should remain

constant. The evolution of the energy of the system for three di�erent cases is shown in �g. 5.8: the plate

model using the ED scheme, the same plate model using the EP scheme, and a simpli�ed model of the system

using beam elements and the ED scheme. For times t > 3 s, the total energy remains a constant for the EP

scheme and nearly constant for the ED schemes. The relative energy loss is also presented in the �gure: 0.6%

of the energy was dissipated by the ED scheme in the period t 2 [3; 20] s. This �gure clearly demonstrates

the non-increasing property of the energy evolution for the proposed ED schemes, as opposed the constant
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Fig. 5.11. Time history of the quarter-span transverse shear force. Plate model (EDS): solid line; Plate model (EPS):

dashed line; Beam model (EDS): dashed-dot line.

energy predicted in EP simulations. The trajectory of the plate mid-span point is shown in �g. 5.9: good

correlation is observed between the predictions of the three models. The beam model is slightly o� due to the

inherent simplifying assumptions. The behavior of the quarter-span axial force and transverse shear force

are shown in �g. 5.10 and 5.11, respectively. The poor predictions of the EP schemes are obvious in these

two plots. The history of axial force presents violent oscillations with amplitudes an order of magnitude

larger than those observed for the ED scheme. The history of the transverse shear force predicted by the

EP scheme quickly diverges from the ED predictions for both beam and plate models. To ascertain the

accuracy of the ED predictions, a convergence study was performed. Nearly identical results were found

with smaller time step sizes �t = 3:0 and 1:0 10�03 s, or when using the time adaptivity procedure. On

the other hand, oscillations of increasing amplitude were found as the time step size is reduced in the EP

scheme. Furthermore, the time adaptivity procedure failed to yield any results because the time step size

was driven to unreasonably small values, �t = 10�07 s, as the procedure tries to cope with increasingly

violent oscillations.
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Fig. 5.13. Con�guration of the cruciform at times t = 0:062 and 0:093 s.

5.3. Dynamic Response of a Cruciform. Consider a cruciform consisting of four thin panels (Panels

A, B, C, and D) connected to a central beam, as depicted in �g. 5.12. Each panel is of thickness t = 4 mm,

length L = 1:2 m, and width b = 0:1 m. The central beam has a square cross-section of width a = 8 mm.

A mass M = 12 kg is attached at the tip of the central beam at point T . Panels and beam are simply

supported at the root of the cruciform. A concentrated load P (t) is applied at point T . The load acts in

the plane de�ned by axes i2 and i3 and makes a 30 degree angle with axis i2. All components are made of

aluminum with properties given in the previous example. The time history of the applied load is

P (t) =

(
P0 (1� cos 2�t=T )=2 t � T;

0 t > T;
(5.3)

where P0 = 1:2 kN and T = 0:1 s.

As the applied load increases, in-plane stresses in the panels rapidly increase and buckling takes place

in those panels subjected to compression, as can be observed in �g. 5.13 that depicts the con�guration of

the cruciform at two instants in time. The trajectory of point T projected onto plane i2, i3 is shown in

�g. 5.14. For reference, the corresponding trajectory of a beam with cross-sectional properties equivalent to

those of the cruciform is also presented. Of course, the equivalent beam model is much sti�er since it does

not allow buckling to take place. Furthermore, the motion remains con�ned to the plane de�ned by axis i1

and the line of action of the applied load. When each panel is modeled individually, the sti�ness of system
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Fig. 5.14. Trajectory of point T of the cruciform projected in the plane i
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3
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Fig. 5.15. Total mechanical energy of the system. Solid line: shell model; dashed line: beam model.

varies both spatially and temporally, giving rise to the more complex motion shown in �g. 5.14. The total

mechanical energy of the system is shown in �g. 5.15. From time t = 0:1 to 0:2 s, the system is free and

its total mechanical energy should remain constant. Due the dissipative nature of the integration scheme, a

small amount of energy is dissipated over that period of time: 2.7% of the energy was dissipated over the

2435 time step period.

The root shear force and quarter-span bending moment in Panels A and C are shown in �g. 5.16

and 5.17, respectively. Each panel undergoes alternating phases of tensile and compressive loading. During

the compressive phases, buckling takes place, and large shear forces and bending moments are observed in

contrast with the tensile phases during which these quantities remain much smaller.
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Fig. 5.16. Time history of the root shear force in Panel A (solid line) and Panel C (dashed line).
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Fig. 5.17. Time history of the quarter-span bending moment in Panel A (solid line) and Panel C (dashed line).
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Fig. 5.18. Con�guration of the snap-through problem.

Fig. 5.19. System con�gurations at various time instants during the simulation.

5.4. Snap-Through of a Cylindrical Shell. The snap-through behavior of a cylindrical shell under

a concentrated load was investigated in ref [22]. The shell consists of a 60 degree sector of a cylinder of

height h = 5 m, radius R = 5 m and thickness t = 0:1 m, as shown in �g. 5.18. Material properties are:

Young's modulus E = 210 GPa, Poisson ratio � = 0:25 and density � = 104 kg=m3. The two straight edges

of the shell are simply supported, while the two curved edges are free.

A concentrated force F is applied at the shell's apex. This force linearly increases from 0 to 5 107 N in

0:2 s, then is held constant at that value. The simulation ends at time t = 0:3 s. Due to the symmetry of

the problem, a quarter shell only is modeled; a regular 4� 4 mesh of quadratic elements was used. The time

step size was selected as �t = 10�3 s.

As the load increases, the shell apex displacement increases, then suddenly, snap-through takes place

and curvature reverses. Curvature reversal initiates in the region of the applied load, then quickly propagates
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Fig. 5.20. Time history of the plate center vertical displacement. ED scheme: solid line; EP scheme: dashed line.
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Fig. 5.21. Time history of the plate center forces for the ED and EP schemes. Force F1: solid line; F3: dashed line. For

clarity the EP results are shifted downwards 3 108 N.

throughout the entire structure, which undergoes subsequent violent oscillations. Snapshots of the system

at various instants in time are given in �g. 5.19. The vertical displacements of the point of application of the

load computed with the ED scheme is shown in �g. 5.20. Note the gradual increase of the shell deection,

until collapse at buckling and the resulting vibratory response in the inverted con�guration.

Ref. [22] presents simulations of this problem using various schemes: the generalized-� [19] and the

CEMA [22] schemes. The former scheme features high frequency numerical dissipation and linear stability

properties, while the latter adds to the generalized-� method a constraint on the total mechanical energy of

the system. CEMA is therefore both energy preserving and high frequency dissipative. The results presented

in �g. 5.20 are in close agreement with those obtained with the generalized-� scheme, but quite di�erent
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Fig. 5.22. Time history of the plate center vertical velocity. ED scheme: solid line; EP scheme: dashed line, shifted

downwards 3 102 m=s for clarity.

from those predicted by CEMA in the post buckling regime. It is important to realize that the higher

modes are only an artifact of the discretization process, and should therefore be removed from the computed

response. A standard scheme like the generalized-�method accomplishes this goal through the characteristic

low-pass shape of its spectral radius; however, there is no guarantee that energy will not be allowed to grow

within one step for nonlinear problems. In contrast, CEMA enforces the exact conservation of energy in the

nonlinear regime, but at the same time inherits high frequency dissipation from the underlying generalized-�

algorithm. Consequently, an arti�cial mechanism for transferring energy from the higher (arti�cial) modes

to the lower modes is created that drives the response to an erroneous solution. In contrast, the proposed

ED scheme achieves both nonlinear stability and high frequency dissipation.

Next, the same problem was simulated with �1 = 1, i.e. with no high frequency dissipation. In this

case, two re�nements in time step size were required to successfully complete the simulation, one at time

t = 0:1665 s (�t = 5 10�4 s), the other at time t = 0:2142 s (�t = 2:5 10�4 s). Deections predicted

by the EP and ED schemes, shown in �g. 5.20, are in good agreement during the initial snap-through

phase, but become increasingly di�erent during the subsequent oscillations. The force and velocity �elds

are markedly di�erent. The plate center forces for both EP and ED schemes are shown in �g. 5.21. The

forces predicted by the EP scheme present violent oscillations of amplitude up to an order of magnitude

larger than those predicted by the ED scheme. These violent oscillations hamper the convergence of the

Newton process at each time step, leading to the need for smaller time steps. The same observations can

be made about �g. 5.22 which compares the plate center vertical velocity. Violent oscillations are initiated

at snap-through and the strict preservation of energy implied by the EP scheme prevents any subsequent

decay of these vibrations. Since vibratory stresses are a great importance to designers, it is essential to

assess the ability of new integration schemes to reliably predict these quantities. It is unfortunate that many

scienti�c publications about geometric integration only present responses for preserved quantities such as

total mechanical energy or momentum. The above plots demonstrate that while EP scheme might perform

very well for the prediction of total energy, momentum, or even displacement �elds, they are unable to

reliably predict other important �elds such as velocities and internal stresses. Consequently, such schemes
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are of little values in real life applications.

6. Conclusions. In this work, a robust algorithm for the dynamic analysis of geometrically exact shell

structures was presented. The method is geometry-based, i.e. it incorporates knowledge about speci�c

qualitative features of the underlying partial di�erential equations. However, departing from the classical

approaches based on strict preservation of energy, the method presented here allows the system to drift away

from the level set of constant energy in a controlled and tunable manner.

This feature achieves two goals. First, a bound is placed on the total mechanical energy of the discrete

system, leading to the concept of nonlinear unconditional stability; this stability criterion is stronger than

that obtained through the classical analysis of numerical schemes. The resulting numerical procedure is

endowed with superior robustness, an important feature when dealing with complex engineering problems.

Second, the monotonic energy drift is associated with numerical dissipation of the high frequency modes.

This tunable dissipation makes the algorithm sti�y accurate, and avoids the build up of energy in the higher

modes that are an artifact of the spatial discretization process.

The proposed scheme can deal with general shell structures and is not tied to a speci�c spatial dis-

cretization of the governing partial di�erential equations. Kinematic nonlinearities are treated in a rigorous

manner, and material nonlinearities can be handled when the constitutive laws stem from the existence of a

strain energy density function. The e�ciency and robustness of the proposed approach were demonstrated

with speci�c numerical examples.
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Appendix A. Rodrigues Parameters.

A common representation of �nite rotations [21] is in terms of Rodrigues parameters r = 2k tan�=2,

where � is the magnitude of the �nite rotation and k the components of the unit vector about which it takes

place. The following notation is introduced r0 = cos2 �=2 = 1 = (1 + rT r=4), and the �nite rotation tensor

R then writes

R(r) = I + r0 er + r0
2
erer: (A.1)

The following decomposition of the rotation tensor is extensively used in this work

R =

�
I +

~r

2

��
I +

~r

2

�
�T

=

�
I +

~r

2

�
�T �

I +
~r

2

�
;

�
I +

~r

2

�
�T

=
R+ I

2
: (A.2)

Appendix B. Orientation of a Unit Director.

Consider a unit vector i3, called a director, that rotates to a �nal orientation e3. For convenience, this

director is considered to be the third unit vector of a triad S de�ned by i1, i2, i3, rotating to a triad S� with
orientation e1, e2, e3. The relationship between these two triads is e� = R i�, where R is an orthogonal

rotation tensor. If one solely focuses on the director, this rotation tensor is not uniquely de�ned, as any

rotation about the director leaves its orientation unchanged. A virtual change in the director orientation is

�e3 = eeT3 � ; (B.1)

where � is the virtual rotation vector, f� = �RRT .

The components of the virtual change in director orientation measured in S� become

RT �e3 = RT eeT3 � = eiT3 RT � = eiT3 � � =
�������
�� �2
� �1

0

������� ; (B.2)

where � � are the components of the virtual rotation vector in S�. This relationship clearly demonstrates

that arbitrary values of � �3 , corresponding to virtual rotations of the director about its own orientation,

will not a�ect virtual changes in the director orientation, and hence, setting � �3 = 0 is a valid choice. The

following notation is adopted

� � = i1��
�

1 + i2��
�

2 = b ���; b = [i1; i2]: (B.3)

��� is a 2� 1, \two parameter" virtual rotation vector. It follows that � = R � � = Rb ���, and hence

�e� = R eiT� b ���: (B.4)

If Rodrigues parameters are used to parameterize R, an equivalent expression can be obtained for �nite

changes in director orientation with the help of eq. (A.2)

e�f � e�i = Rm
eiT� b s� = Qm s�; r� = b s�; (B.5)

where r� are the Rodrigues parameter measured in S�, and s� the corresponding \two parameter" incremental
rotation vector.
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